APPENDIX G: VECTOR POTENTIAL, FIELD MOMENTUM, AND GAUGE TRANSFORMATIONS This section is included because it is hard to find the magnetic vector potential A discussed thoroughly in one place, and we need the vector potential in superconductivity. It may seem mysterious that the hamiltonian of a particle in a magnetic field has the form derived in (18) below: $$H = \frac{1}{2M} \left(\mathbf{p} - \frac{Q}{c} \mathbf{A} \right)^2 + Q \varphi , \qquad (1)$$ where Q is the charge; M is the mass; \mathbf{A} is the vector potential; and φ is the electrostatic potential. This expression is valid in classical mechanics and in quantum mechanics. Because the kinetic energy of a particle is not changed by a static magnetic field, it is perhaps unexpected that the vector potential of the magnetic field enters the hamiltonian. As we shall see, the key is the observation that the momentum \mathbf{p} is the sum of two parts, the kinetic momentum $$\mathbf{p}_{\rm kin} = M\mathbf{v} \tag{2}$$ which is familiar to us, and the potential momentum or field momentum $$\mathbf{p}_{\text{field}} = \frac{Q}{c} \mathbf{A} . \tag{3}$$ The total momentum is $$\mathbf{p} = \mathbf{p}_{\text{kin}} + \mathbf{p}_{\text{field}} = M\mathbf{v} + \frac{Q}{c}\mathbf{A} , \qquad (4)$$ and the kinetic energy is $$\frac{1}{2}Mv^2 = \frac{1}{2M}(Mv)^2 = \frac{1}{2M}\left(\mathbf{p} - \frac{Q}{c}\mathbf{A}\right)^2.$$ (5) The vector potential¹ is related to the magnetic field by $$\mathbf{B} = \operatorname{curl} \mathbf{A} . \tag{6}$$ We assume that we work in nonmagnetic material so that **H** and **B** are treated as identical. ## Lagrangian Equations of Motion To find the Hamiltonian, the prescription of classical mechanics is clear: we must first find the Lagrangian. The Lagrangian in generalized coordinates is $$L = \frac{1}{2}M\dot{q}^2 - Q\varphi(\mathbf{q}) + \frac{Q}{c}\dot{\mathbf{q}} \cdot \mathbf{A}(\dot{\mathbf{q}}) . \tag{7}$$ This is correct because it leads to the correct equation of motion of a charge in combined electric and magnetic fields, as we now show. In Cartesian coordinates the Lagrange equation of motion is $$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0 , \qquad (8)$$ and similarly for y and z. From (7) we form $$\frac{\partial L}{\partial x} = -Q \frac{\partial \varphi}{\partial x} + \frac{Q}{c} \left(\dot{x} \frac{\partial A_x}{\partial x} + \dot{y} \frac{\partial A_y}{\partial x} + \dot{z} \frac{\partial A_z}{\partial x} \right) ; \tag{9}$$ $$\frac{\partial L}{\partial \dot{x}} = M\dot{x} + \frac{Q}{c}A_x \; ; \tag{10}$$ $$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = M\ddot{\ddot{x}} + \frac{Q}{c}\frac{dA_x}{dt} = M\ddot{\ddot{x}} + \frac{Q}{c}\left(\frac{\partial A_x}{\partial t} + \dot{x}\frac{\partial A_x}{\partial x} + \dot{y}\frac{\partial A_x}{\partial y} + \dot{z}\frac{\partial A_x}{\partial z}\right). \tag{11}$$ Thus (8) becomes $$M \ddot{x} + Q \frac{\partial \varphi}{\partial x} + \frac{Q}{c} \left[\frac{\partial A_x}{\partial t} + \dot{y} \left(\frac{\partial A_x}{\partial y} - \frac{\partial A_y}{\partial x} \right) + \dot{z} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \right] = 0 , \quad (12)$$ ¹For an elementary treatment of the vector potential see E. M. Purcell, *Electricity and magnetism*, 2nd ed., McGraw-Hill, 1984. or $$M\frac{d^2x}{dt^2} = QE_x + \frac{Q}{c} \left[\mathbf{v} \times \mathbf{B} \right]_x , \qquad (13)$$ with $$E_{x} = -\frac{\partial \varphi}{\partial x} - \frac{1}{c} \frac{\partial A_{x}}{\partial t} ; \qquad (14)$$ $$\mathbf{B} = \operatorname{curl} \mathbf{A} . \tag{15}$$ Equation (13) is the Lorentz force equation. This confirms that (7) is correct. We note in (14) that **E** has one contribution from the electrostatic potential φ and another from the time derivative of the magnetic vector potential **A**. ## Derivation of the Hamiltonian The momentum p is defined in terms of the Lagrangian as $$\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}} = M\dot{\mathbf{q}} + \frac{Q}{c}\mathbf{A} , \qquad (16)$$ in agreement with (4). The hamiltonian $H(\mathbf{p},\mathbf{q})$ is defined by $$H(\mathbf{p},\mathbf{q}) \equiv \mathbf{p} \cdot \dot{\mathbf{q}} - L , \qquad (17)$$ or $$H = M\dot{q}^2 + \frac{Q}{c}\dot{\mathbf{q}}\cdot\mathbf{A} - \frac{1}{2}M\dot{q}^2 + Q\varphi - \frac{Q}{c}\dot{\mathbf{q}}\cdot\mathbf{A} = \frac{1}{2M}\left(\mathbf{p} - \frac{Q}{c}\mathbf{A}\right)^2 + Q\varphi , \quad (18)$$ as in (1). ## Field Momentum The momentum in the electromagnetic field that accompanies a particle moving in a magnetic field is given by the volume integral of the Poynting vector, so that $$\mathbf{p}_{\text{field}} = \frac{1}{4\pi c} \int dV \, \mathbf{E} \times \mathbf{B} \quad . \tag{19}$$ We work in the nonrelativistic approximation with $\nu \le c$, where ν is the velocity of the particle. At low values of ν/c we consider **B** to arise from an external source alone, but **E** arises from the charge on the particle. For a charge Q at \mathbf{r}' , $$\mathbf{E} = -\nabla \varphi \; ; \qquad \nabla^2 \varphi = -4\pi \mathbf{Q} \; \delta(\mathbf{r} - \mathbf{r}') \; . \tag{20}$$ Thus $$\mathbf{p}_f = -\frac{1}{4\pi c} \int d\mathbf{V} \, \nabla \varphi \times \text{curl } \mathbf{A} \ . \tag{21}$$ By a standard vector relation we have $$\int dV \, \nabla \varphi \times \text{curl } \mathbf{A} = - \int dV \, [\mathbf{A} \times \text{curl } (\nabla \varphi) - \mathbf{A} \, \text{div } \nabla \varphi - (\nabla \varphi) \, \text{div } \mathbf{A}] \ . \tag{22}$$ But curl $(\Delta \varphi) = 0$, and we can always choose the gauge such that div $\mathbf{A} = 0$. This is the transverse gauge. Thus, we have $$\mathbf{p}_{\!f} = -\frac{1}{4\pi c} \int dV \, \mathbf{A} \, \nabla^{\!2} \varphi = \frac{1}{c} \int \! dV \, \mathbf{A} Q \, \delta(\mathbf{r} - \mathbf{r}') = \frac{Q}{c} \, \mathbf{A} \ . \eqno(23)$$ This is the interpretation of the field contribution to the total momentum $\mathbf{p} = M\mathbf{v} + Q\mathbf{A}/c$.