APPENDIX G: VECTOR POTENTIAL, FIELD MOMENTUM,
AND GAUGE TRANSFORMATIONS

This section is included because it is hard to find the magnetic vector po-
tential A discussed thoroughly in one place, and we need the vector potential

in superconductivity. It may seem mysterious that the hamiltonian of a particle
in a magnetic field has the form derived in (18) below:

H = ﬁ (p—— %A)2 + Q¢ , (1)

where Q is the charge; M is the mass: A is the vector potential; and ¢ is
the electrostatic potential. This expression is valid in classical mechanics and
in quantum mechanics. Because the kinetic energy of a particle is not changed
by a static magnetic field, it is perhaps unexpected that the vector potential
of the magnetic field enters the hamiltonian. As we shall see, the key is the

observation that the momentum p is the sum of two parts, the kinetic
momentum

P = Mv (2)

which is familiar to us, and the potential momentum or field momentum

Phiela = gA : (3)
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The total momentum is

Q
P= Pt Prea = Mv+ A, (4)
and the kinetic energy is
Ly = L L Q4Y
g Mo* = op (Mo)® = o <p . A) : (5)

The vector potential® is related to the magnetic field by
B=curlA . (6)
We assume that we work in nonmagnetic material so that H and B are treated
as identical.
Lagrangian Equations of Motion

To find the Hamiltonian, the prescription of classical mechanics is clear: we
must first find the Lagrangian. The Lagrangian in generalized coordinates is

L =101 - 0eta) + L - AlG) @

This is correct because it leads to the correct equation of motion of a charge in
combined electric and magnetic fields, as we now show.
In Cartesian coordinates the Lagrange equation of motion is

4oL _ L _ (8)

- >

dt ax  ox

and similarly for y and z. From (7) we form |

ago Q (04, aA
Q 6x ( Bx y Jx ax : (9> ':
L _ i+ 24 . (10) |
dx ¢
|
. d . F 9A 9A P |
i%=Mx+gﬁ=Mx+9< R S "+zﬁ>. (11) '
dt ox c dt c\d ox Ay 0z

Thus (8) becomes
dp Q@ (04, 94, (9A: 9AL\| _
M +Qa_+”“[at +y<8y W)+z(az 6x>]_0’ (12)

"For an elementary treatment of the vector potential see E. M. Purcell, Electricity and
magnetism, 2nd ed., McGraw-Hill, 1984.
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or
Md’z‘—QEx+—Q[v XBI, , (13)

d; c

with
__d¢ 194
E=—% oo (14)
B=curlA . (15) ;

Equation (13) is the Lorentz force equation. This confirms that (7) is correct.
We note in (14) that E has one contribution from the electrostatic potential ¢
and another from the time derivative of the magnetic vector potential A.
Derivation of the Hamiltonian

The momentum p is defined in terms of the Lagrangian as

oL -
=—==M49+—-A, 16
P= 4 . (16)
in agreement with (4). The hamiltonian H (p.q) is defined by |
Hpg=p-q-L, 17)
or :
2, Q. 1,,. Q. 1 Q,\
gt L X AL - AR N S
H=Mg + -q-A- Mg+ Q¢ - ~q-A=g ip—A] +Q¢, (18)
asin (1). |

Field Momentum

|
The momentum in the electromagnetic field that accompanies a particle ‘
moving in a magnetic field is given by the volume integral of the Poynting vec- |
tor, so that

o = ﬁdeE XB . (19)

We work in the nonrelativistic approximation with v < ¢, where v is the veloc-
ity of the particle. At low values of »/c we consider B to arise from an external
source alone, but E arises from the charge on the particle. For a charge Q
atr’,

E=-Vo; Vi=—-47Q8(r—r) . (20) |
Thus

pr= —21711'; IdV Vo X curl A . (21)
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By a standard vector relation we have
JdVVe X curl A= —[dV[A X curl (Vo) — AdivVe — (Vo) divA] . (22)

But curl (A¢) = 0, and we can always choose the gauge such that div A = 0.
This is the transverse gauge.
Thus, we have

1 1 no9
Pf=~RdeAV2¢=EdeAQ8(r—r)—;A- (23)

This is the interpretation of the field contribution to the total momentum
p = Mv + QAlc.



